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Abstract

A method for analyzing global/local behavior of plate and shell structures is described. In this

approach, a detailed finite element model of the local region is incorporated within a coarser global finite

element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal

correspondence) with the global model at their common boundary; therefore, the two models may be

constructed independently. 'The nodal incompatibility of the models is accounted for by introducing

appropriate constraint conditions into the potential energy in a hybrid variational formulation. The

primary advantage of this method is that the need for transition modeling between global and local

models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are

reduced since tedious and complex transitioning need not be performed. Second, errors due to the

mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements

beyond what is needed to represent the geometry of the component. The method is applied herein to a

plate loaded in tension and transverse bending. The plate has a central hole, and various hole sizes and

shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack

emanating from a window in the panel. While this method is applied herein to global/local problems,

it is also applicable to the coupled analysis of independently modeled components as well as adaptive

refinement.

Nomenclature

a minor axis of ellipse

b major axis of ellipse

E Young's modulus
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f generalized force vector

i superscript associated with interface nodes
j subscript associated with subdomains

k subscript associated with interface segment
L length
K stiffness matrix

Kt stress concentration factor

Mx moment resultant in x-direction

(Mx)0 applied far field moment resultant in x-direction

m number of interface nodes for subdomains

N generalized displacement shape function matrix
Nx stress resultant in the x-direction

(Nx)0 applied far field stress resultant in x-direction

n outward unit normal to subdomain interface

n number of pseudo-nodes on interface
o superscript associated with non-interface nodes

p number of degrees of freedom per node
q generalized displacement vector

R interpolation matrix for Lagrange multipliers
S interface path

T interpolation matrix for interface displacements

T superscript indicating transpose of a matrix
t thickness

u displacement vector along the interface for subdomains

v displacement vector on the interface, S
W width

ct vector of unknown coefficients for Lagrange multipliers
6 variational operator

A vector of Lagrange multipliers
v Poisson's ratio

tr stress tensor

o', normal stress component in z-direction

II total potential energy
I2 domain ofdiscretization

Introduction

The finite element method is the most widely used structural analysis tool mainly due to its flexibility

in modeling complicated geometries. While the finite element method can be used to make accurate

calculations of detailed stresses, the method is not generally efficient for the design phase because it

requires extensive modeling and is computationally expensive. However, with increased utilization of

composite materials in aerospace structures, there is a need for detailed modeling at material or geometric

discontinuities (e.g., ply dropoffs, cutouts, and stiffener runouts) in order to predict accurately the

strength and failure modes of these structures early in the design process. Analytical methods which

reduce modeling time while providing the necessary detailed stress and strain states are therefore needed.

Global/local analysis is often used to reduce modeling complexities and to predict detailed stress and

strain states in structural components.
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The global/local analysis of plate and shell structures has, in the past, primarily been accomplished

using one of two approaches. The first approach is usually used when the region of interest is not known

prior to an analysiQ ,2. In this approach, results from a global analysis are interpolated and applied as

boundary conditions on an independent detailed local model. While this approach leads to a smaller

overall problem size and simplified modeling, methods developed using the approach usually provide no

interaction between the local and global models. To overcome this problem, an iterative global/local

method 3 has recently been proposed that provides for this interaction. This method, however, has

been applied only to mesh discretizations with a one-to-one nodal correspondence across the boundary

between subdomains. Finite element meshes which preserve this one-to-one nodal correspondence across

the boundary between subdoinains will hereafter be referred to as nodally compatible.

The second approach, usually used when the region of interest is known a priori, typically involves

a single finite element analysis with the finite element mesh highly refined in the known region of

interest 4-6. This approach may, however, lead to highly complex modeling because mesh transitioning

between the local region and the rest of the model is essential to obtain a solution to the problem in a

timely and cost effective manner.

Recently, a third approach, which combines the desirable features of the first two approaches, has

been the subject of research. The methods developed using this approach provide modeling flexibil-

ity (i.e., they permit independent modeling of global and local subdomains) as well as a coupling of

the global and local analyses (i.e., they provide the necessary interaction between the global and lo-

cal models). Some of these methods have concentrated on the development of techniques for parallel

computers 7-8 while others have used some form of multi-point constraints along the common subdomain

boundaries 9-1°. In reference 11, three formulations for coupling the independently modeled regions

were developed and studied. The hybrid variational formulation was shown to be the most robust and

accurate of the three examined.

The purpose of this paper is to describe a coupled global/local analysis method developed using

the third approach. This method couples global and local subdomains using an independent function

along the interface between the subdomainQ 1. The nodal compatibility of the models is accounted for

by introducing appropriate constraint conditions into the total potential energy functional.

The description of the coupled global/local analysis nlethod is presented, followed by two appli-

cations of the method to plate and shell structures. The first application is a plate loaded in tension

and transverse bending. The plate has a central hole, and various hole sizes and shapes are studied. In

these analyses, the region in the vicinity of the hole is taken to be the local region; the remainder of

the panel is taken to be the global region, and the two regions are modeled independently. The second

application is a composite laminated fuselage panel with a crack emanating from a window in the panel.

In this analysis, the region in the immediate vicinity of the crack is taken to be the local region and
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the remainder of the panel is taken to be the global region. While these demonstration problems are

typical global/local problems, the present coupled analysis method is also applicable to the analysis of

independently modeled components and may be used to perform adaptive refinement.

Description of Coupled Global/Local Analysis Method

The coupled analysismethod presentedhereinallowsthe independent modeling ofdifferentregions

or components without concern forthe nodal compatibilitybetween the finiteelement models. Transition

modeling between a regionwith a finemesh and a regionwith a coarsemesh isno longernecessary.This

approach prevents changes in the modeling ofthe localregionfrom affectingthe modeling in the global

region. For example, with a judiciouslychosen localmodel, an analyst may perform a geometrically

parametric study of hole sizeand shape by changing the mesh in the immediate vicinityof the hole,

without having to change the modeling ofthe globalregion.

This method does not improve the performance of the finiteelements used in the analysisand

thereforedoes not improve the qualityof the resultsattainableby a particularelement. However,

by eliminatingor reducing transitionmodeling, the introductionof distortedelements into the finite

element model islimitedto what isnecessaryto representthe geometry of the component. Therefore,

no additionalerrorsassociatedwith mesh distortionare introduced. The eliminationof unnecessary

element distortionerrorsallowsthe use of coarsermeshes, and, therefore,the same qualitativeresults

may bc obtained with a smallernumber ofdegreesoffreedom.

The method described hereinmay generallybe appliedto connect an arbitrarynumber of inde-

pendently modeled subdomains. However, in the followingdiscussion,the mathematical formulation

willbe described in terms of two subdomains and a single,multi-segmented interface.Consider a two-

dimensional domain, f2,that ismodeled as two independently discretizedsubdomalns, f_1and f/2,as

shown in Figure I. The interface,S, ismodeled as two semi-independent linesegments. Each segment

of the interface,S, isdiscretizedwith evenly spaced "pseudo-nodes" (open circlesin Figure I) which

need not conform to the discretizationofeitherof the subdomains. An interfacesuch as that shown in

Figure I isconsidered to bc a single,two-segmented interface(segments AB and BC in Figure 1). At

the corner (pointB in Figure I),a pseudo-node must exist.

The displacement vectoralong each interfacesegment, k,may be writtenas

v = Tq, (1)

where T is a pxprtk matrix of interpolating functions, and qs is a vector ofpnk generalized displacements

associated with the nk interface pseudo-nodes each having p degrees of freedom. The specific form of the

matrix T depends on the type of function chosen and the number of evenly spaced pseudo-nodes, nh,

selected along segment k of the interface, S. As in reference 11, cubic splines are used to describe the
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displacement field vector, v, along each segment of the interface, S. Equation 1 is assumed to be valid

along each segment (segments AB and BC in Figure 1); at the interface corner (point B in Figure 1),

the values from each interface segment are constrained to be the same.

In the hybrid variational formulation, the total potential energy equation is modified to include an

integral form for the compatibility between the interface and the subdomains and is given by

II = IIa_ + IIa_ + fs,X_(v-ut)ds+ fsJ_(v-u2)ds (2)

where IIaj is the total potential energy, ,Xs is a vector of Lagrange multipliers, and u s is the displacement

field vector along the interface for subdomain j. The constraint integrals are added to the functional

to enforce the continuity, in the variational sense, of displacements across the interface. Equation 2

corresponds to the "double layer interface" or "frame" method of the hybrid variational principle 12

and has in the past been used primarily to enforce compatibility between adjacent elements that have

incompatible assumed displacement shape functions within the context of a nodally compatible finite

element model 13-16. Herein, however, the variational statement in equation 2 is utilized to enforce

compatibility between nodally incompatible finite element models.

Assuming that the displacement boundary conditions are satisfied, the stationary condition for the

modified total potential energy for arbitrary uj in the subdomains, arbitrary v on the interface, S, and

arbitrary ,Xj on the interface parts of the subdomains, results in the following Euler equations

,kj = (trn)j ; j = 1, 2
6II=0 =_ ,kl+As=0 on S. (3)

uj =v; j= 1,2

These equations are in addition to the usual Euler equations which satisfy the equilibrium equations

and traction boundary conditions. In equation 3, tr is the stress tensor and n is the outward unit

normal to the subdomain interface. Thus, equation 3 states that )_S represent the tractions on the

interface for subdomain j and that the sum of the tractions across the interface is zero (i.e., equilibrium

is maintained, in the variational sense, across the interface). Equation 3 also states that the displacement

field on the interface for subdomain j is equal to the assumed displacement field, v, along the interface

(i.e., displacement continuity is maintained, in the variational sense, across the interface).

In the finite element discretization, the displacements, uj, and the Lagrange multipliers, ,Xj, are

independently approximated for each element along the interface, and the displacement field, v, is

approximated on the interface, S, as discussed previously. The displacements, us, along the interface

i i
are expressed in terms of unknown nodal displacements, qj, as uj = N i %, and the Lagrange multipliers,

,Xj, are expressed in terms of unknown coefficients, otj, as ,Xj = Rjcq, where N s and Rj are matrices

of interpolating functions. The interpolating functions in the matrix, Rj, are taken to be constant

parameters for linear elements and linear functions for quadratic elements. With these assumptions,
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equation 2 may be rewritten as

T T _ T T 1 T T T T
IV[= lI_, + ]-[ft_ + c_lMlql + o%M2q2 + otGlq, + c%G2qs (4)

where Mj and Gj are integrals on the interface defined in terms of Ri, N_, and T as

M_ =-fsNfRjds and Gj=fsTTRjds ; j--l,2 (5)

"Faking the first variation of the modified total potential energy with respect to the independent variables

(q'j, q_, q,, ai, j = 1,2) and setting it to zero yields the system of equations

. ;, io
K 1 K 1 0 0 0 M1 0
K? K_ ° 0 0 0 0 0

0 0 K_' Ki2° 0 0 M2
o o ° 0 0 0
0 0 0 0 0 {_1 62

M_ 0 0 0 G: 0 0

0 0 M_" 0 G_" 0 0

where % is the generalized displacement vector, f3 is the external

q_

q_

q,
O_ 1

ol 2

fl

f;

= f_
o

o

o

(6)

force vector, and K i is the stiffness

matrix associated with subdomain j. The system of equations given by equation 6 is symmetric, not

banded and not positive definite. Thus, a general solver which uses Gaussian elimination and operates

on a dense matrix is used in this case. Therefore, modeling efficiency has been achieved at the expense

of possible additional computer time required to solve the system of equations. The above system of

equations may also be partially solved first (e.g., using a singular value decomposition algorithm two

times) to obtain a smaller, symmetric, and positive definite system of equations which may be solved

by conventional solvers. It is also believed that current and future fast parallel and serial computers

and new solution algorithms will address the problem of computational efficiency and that this problem

should not be considered a serious drawback for the present method described herein.

Applications

The coupled analysis approach described in this paper and validated in reference 11 has been utilized

to analyze representative global/local examples. An isotropic plate subjected to tension and transverse

bending is first analyzed. The plate has a central hole, and various hole shapes and sizes are studied.

This example demonstrates the use of the coupled analysis method in studying the effect of details in

structural design, such as hole configuration. The effectiveness of the method is then demonstrated on

a more complicated example. In this example, a representative composite laminate fuselage panel with

simulated stringers and frames and with a crack emanating from a window in the panel is analyzed. A

nine-node assumed natural-coordinate strain (ANS) element 1_ is used in the problems discussed in this

paper. This element has five degrees of freedom at each node (i.e., three displacements and two bending

rotations) and uses a strain field approximation (equivalent to a selective directionally reduced order of

integration) to calculate the element stiffness matrix.
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Plate with a Central Hole

An isotropic plate with a central hole (shown in Figure 2) is an ideal structure to verify the

global/local capability of the method since solutions are available in the literature. In addition, geomet-

rically parametric studies may be performed to demonstrate the added modeling flexibility provided by

the method. Tension and transverse bending loads are applied to tile plate, and various hole sizes and

shapes are studied.

Taking advantage of symmetry, only a quarter of the plate is modeled in the coupled analysis. The

region in the vicinity of the hole is taken to be the local region and the remainder is taken to be the

global region. The hole size and shape are varied by changing the finite element model of the local region,

while the model of the global region remains unchanged. The finite element meshes for the global model

and four typical local models with different hole configurations are shown in Figure 3.

The stress concentration factor, Kt, for an infinite plate in tension which has a central circular hole

is defined as the ratio of the maximum longitudinal stress resultant, (N_) ..... to the far field longitudinal

stress resultant, (Nx)0. The exact value of Kt is 3 for all infinite isotropic plate TM. For a finite-width

plate loaded in tension with a half-width, w, and with a central circular hole of radius a the stress

concentration factor, Kt, may be defined as the ratio of the maxinmm longitudinal stress resultant,

(Nx) .... to the nominal longitudinal stress resultant (Nx) ........ where

(Nx),_om- (N_)o

The finite-width effects on the stress concentration factors for an isotropic plate loaded in tension and

having a circular hole have been obtained numerically by Howland 19, using successive approximations,

and reproduced by Peterson _°. Figure 4 shows the stress concentration factor as a function of the hole

radius to plate half-width ratio, _. The coupled analysis solution is seen to be in excellent agreement

with the solution by Howland.

The stress concentration factor, Kt, for an infinite plate subjected to transverse bending and having

a central circular hole is defined as the ratio of the maximum longitudinal moment resultant, (M_) .... to

the far field longitudinal moment resultant, (M.)0. The exact solution for the stress concentration factor

for an infinite plate subjected to transverse bending and having a circular hole has been obtained by

Goodier 21 and Reissner 22 and reproduced by Peterson 2°. The exact solution for the stress concentration

factor along with the results obtained by the coupled method are shown in Figure 5 as a function of the

hole diameter to plate thickness ratio, _. The coupled analysis solution is in excellent agreement with

the exact solution.

The effect of the hole shape on the stress concentration factor for an infinite plate subjected to

tension and transverse bending is shown in Figures 6 and 7, respectively. The exact solution for the
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stress concentration factor for an infinite plate subjected to tension load has been obtained by Kolosoff 23

and Inglis 24, and reproduced by Peterson 2°. The stress concentration factor for an infinite plate subjected

to a pure transverse bending load has been obtained by Goodier 21 and reproduced by Peterson 2°. The

stress concentration factor for each load case is shown as a function of the ratio of the hole axes, _. The

coupled analysis is in excellent agreement with the exact solution for each loading condition.

Composite $_uselage Panel

In the second application,the coupled analysismethod isapplied to a composite fuselagepanel

shown in Figure 8. It should bc emphasized that the purpose of this example is not to perform a

comprehensive detailedanalysisof a complicated panel, but rather to demonstrate that the method

described herein may be utilizedto perform such analyses. The panel ismade of a 16 ply composite

laminate (-4-45/02/-{- 45/902),. Stringer and frame actions are simulated by constraining appropriate

motions of the panel along the stringer and frame paths as shown in Figure 8. A hole is introduced at

the center of the panel to simulate a window. The square window has rounded corners, and there is a

crack emanating from one of the corners. The loading on this panel is composed of a uniform pressure

load on the concave side of the panel and uniform displacements applied on the curved edges of the

panel in the longitudinal direction in order to simulate typical loads experienced by a panel in a fuselage

under hydrostatic pressure. To simulate the presence of glass in the window, an equivalent approximate

load is applied to the edges of the hole. This load is calculated by integrating the constant pressure

over the surface of the window and distributing the result uniformly around the edge of the hole. The

region in the immediate vicinity of the crack is taken to be the local region. The rest of the panel is

taken to be the global region, and the two regions are modeled independently (see Figure 9). For this

example, the interface between the local and global regions has a slightly curved geometry (which is due

to the curvature of the panel) and is composed of four segments (which are shown as four straight line

segments in Figure 9c forming the boundaries of the local model). The model for the coupled analysis

has 4591 active degrees of freedom.

Since there are no theoretical solutions for this example, a reference solution is obtained using a

finite element model of the panel (shown in Figure 10) which does not have an interface. This finite

element model has the same refinement in the region around the crack-tip as the local model used in

the coupled analysis. In order to avoid transition modeling, this high level of discretization is extended

around the entire hole. The reference solution model is also more refined in the region away from

the window than the global model used in the coupled analysis due to the propagation of the local

discretization. The model for the reference solution has 11876 active degrees of freedom, which is nearly

2.6 times as many degrees of freedom as the model in the coupled analysis. Although there are many

ways to model this panel, (e.g., the region around the hole and away from the crack-tip need not be
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as fine in the reference model), this reference model was selected because of ease of modeling and to

minimize transition modeling.

The deformation patterns for global/local analysis and the reference solution are shown in Figure 11.

The distribution of axial stress, trz, from the coupled analysis and the reference solution are shown in

Figure 12. A comparison of the results shown in Figures 11 and 12 reveals that the coupled analysis

correlates well with the reference solution. In fact, the maximum value of the normal displacement

obtained from the coupled analysis is within 0.08% of the reference solution. Moreover, the maximum

value of the stresses obtained from the coupled analysis is within 1% of the reference solution. Therefore,

quantities such as stress intensity factors and the strain energy release rates will also be nearly identical.

Thus, one may obtain quantities such as critical crack length (which indicates the onset of unstable

crack growth) by incrementally extending the crack length and repeating the coupled analysis until the

critical stress intensity factors and critical strain energy release rates are obtained. A comparison of the

stress distribution between the coupled analysis and the reference solution demonstrates the robustness

of the method.

Concluding Remarks

A coupled analysis method for analyzing plate and shell structures composed of two or more indepen-

dently modeled finite element subdomains has been described and applied herein to selected global/local

examples. The method allows the analyst to incorporate a detailed model of the local subdomain within

the global model. The local model need not be nodally compatible with the global model. Thus, the

need for tedious transition modeling is eliminated. A hybrid variational formulation was utilized to

achieve compatibility, in a variational sense, between the nodally incompatible models.

The coupled analysis method described herein was applied to two demonstration problems: (1) an

isotropic plate which is loaded in tension and transverse bending and which has a central hole of various

sizes and shapes, and (2) a composite fuselage panel with a crack emanating from a window cutout.

Excellent agreement was obtained between the coupled analysis solutions and the reference solutions in

each case. The capability of the method for treating details in structural design was demonstrated by the

parametric study of the hole configuration in the isotropic plate example. The potential of the method

for the detailed analysis of complicated shell structures was demonstrated by the coupled analysis of a

composite fuselage panel with a crack emanating from a window cutout.

The coupled analysis method presented herein provides a technique for predicting local, detailed

stress states for plate and shell structures. The simplified modeling provided by the coupled analysis

method should enhance efficiency of analysis methods and provide the modeling flexibility needed to

address local details. Such enhancements should lead to a means of integrating detailed analysis into

the design process.
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p = 10.() psi

s = 1.5in.

d = 7.{} in.

r = :2.(} in.

L = 32.0 in.

f_ = 85.0 in (panel radius)

t);m¢.l' art: is 21.6 degrees

Figure 8. Cracked fuselage panel
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a. Global model 1_. (llo,sc'-up of region around hole

c. Lo(:al .Model

Figure 9. Finite element moduls for C(ml)lcd analysis
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C,l,_sc-ut) of region around hole

Figure 10. Finite element model for reference solution
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Cout)led analysis solution Reference solution

a. Gl(_l_al I)crst)c(:tiv(,

Coupled analysis sohltion

b. Local t)crsl)(x:tiv(,

I/efcrcrlcc solution

Figure 11. D(ffi)rm(_(t g('om(,t r.v
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_Z

Coupled analysis solution R ¢'.f_'rcncc solution

a. Gh)ba] wrsp('ctiv('

rnodcl

Coupled analysis solut, ion I_(.f( r n((. solution

b. Local tx,rsp(:ctiv('

Figure 12. Axial stress, (5,. distribution
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